Function to import a data.frame
object for use in eatGADS
while adding explicit variable and value meta information through
separate data.frames
.
Arguments
- df
A
data.frame
.- varLabels
A
data.frame
containing the variable labels. All variables in the data have to have exactly one column in this data.frame.- valLabels
A
data.frame
containing the value labels. All referenced variables have to appear in the data, but not all variables in the data have to receive value labels. Can be omitted.- checkVarNames
Should variable names be checked for violations of
SQLite
andR
naming rules?
Details
The argument varLables
has to contain exactly two variables, namely varName
and varLabel
. valLables
has
to contain exactly four variables, namely varName
, value
, valLabel
and missings
. The column value
can only contain numerical values. The column missings
can only contain the values "valid"
and "miss"
.
Variables of type factor
are not supported in any of the data.frames
.
Examples
dat <- data.frame(ID = 1:5, grade = c(1, 1, 2, 3, 1))
varLabels <- data.frame(varName = c("ID", "grade"),
varLabel = c("Person Identifier", "School grade Math"),
stringsAsFactors = FALSE)
valLabels <- data.frame(varName = c("grade", "grade", "grade"),
value = c(1, 2, 3),
valLabel = c("very good", "good", "sufficient"),
missings = c("valid", "valid", "valid"),
stringsAsFactors = FALSE)
gads <- import_raw(df = dat, varLabels = varLabels, valLabels = valLabels, checkVarNames = FALSE)
# Inspect Meta data
extractMeta(gads)
#> varName varLabel format display_width labeled value valLabel
#> 1 ID Person Identifier <NA> NA no NA <NA>
#> 2 grade School grade Math <NA> NA yes 1 very good
#> 3 grade School grade Math <NA> NA yes 2 good
#> 4 grade School grade Math <NA> NA yes 3 sufficient
#> missings
#> 1 <NA>
#> 2 valid
#> 3 valid
#> 4 valid
# Extract Data
dat <- extractData(gads, convertLabels = "character")