Extract results
get.lmer.effects.Rd
Arguments
- lmerObj
An object of class
merMod
orglmerMod
, as created bylmer
orglmer
from thelme4
package.- bootMerObj
Optional: An object of S3 class
boot
, as created bybootMer
. Applies if standard error and/or confidence intervals from a bootstrap should be augmented to thelme4
results object.- conf
Applies if confidence intervals from a bootstrap should be augmented to the
lme4
results object. Define the upper bound of the confidence interval.- saveData
Logical: Should the data frame be attached to the output as an attribute?
Value
A data frame with at least 10 columns comprising the results of the GLMM analysis.
- model
The name of the object the analysis results are assigned to.
- source
The lmer-function called
- var1
First variable name
- var2
Second variable name
- type
Type of variable and/or derived parameter
- group
The group a model parameter belongs to
- par
Name of the model parameter
- derived.par
Second name of the model parameter
- var2
Second variable name
- value
Corresponding numerical value
Details
In principle, get.lmer.effects
collects only output already contained in the
lme4-output. Additionally, the marginal and conditional r-squared from Nakagawa and
Schielzeth (2013) is provided. The parameters are labeled R2_m
and R2_c
in the par
-column.
Examples
if (FALSE) { # \dontrun{
library ( lme4 )
### First example: GLMM analysis
fmVA <- glmer( r2 ~ Anger + Gender + btype + situ + (1|id) + (1|item),
family = binomial, data = VerbAgg)
results <- get.lmer.effects ( fmVA )
### second example: obtain standard errors and confidence intervals from the model estimated
### in the first example via bootstrap (using only 5 bootstrap samples for illustration)
### We use the 'bootMer' function fom the lme4 package
fmVAB<- bootMer(x = fmVA, FUN = get.lmer.effects.forBootMer, nsim = 5)
resultsBoot<- get.lmer.effects ( lmerObj = fmVA, bootMerObj = fmVAB, conf = .95, saveData = FALSE)
} # }