Skip to contents

Extract results from an object created by lmer or glmer from the lme4 package.

Usage

get.lmer.effects(lmerObj, bootMerObj = NULL, conf = 0.95, saveData = FALSE)

Arguments

lmerObj

An object of class merMod or glmerMod, as created by lmer or glmer from the lme4 package.

bootMerObj

Optional: An object of S3 class boot, as created by bootMer. Applies if standard error and/or confidence intervals from a bootstrap should be augmented to the lme4 results object.

conf

Applies if confidence intervals from a bootstrap should be augmented to the lme4 results object. Define the upper bound of the confidence interval.

saveData

Logical: Should the data frame be attached to the output as an attribute?

Value

A data frame with at least 10 columns comprising the results of the GLMM analysis.

model

The name of the object the analysis results are assigned to.

source

The lmer-function called

var1

First variable name

var2

Second variable name

type

Type of variable and/or derived parameter

group

The group a model parameter belongs to

par

Name of the model parameter

derived.par

Second name of the model parameter

var2

Second variable name

value

Corresponding numerical value

Details

In principle, get.lmer.effects collects only output already contained in the lme4-output. Additionally, the marginal and conditional r-squared from Nakagawa and Schielzeth (2013) is provided. The parameters are labeled R2_m and R2_c in the par-column.

Author

Sebastian Weirich

Examples

if (FALSE) { # \dontrun{
library ( lme4 )
### First example: GLMM analysis
fmVA <- glmer( r2 ~ Anger + Gender + btype + situ + (1|id) + (1|item),
               family = binomial, data = VerbAgg)
results    <- get.lmer.effects ( fmVA )

### second example: obtain standard errors and confidence intervals from the model estimated
### in the first example via bootstrap (using only 5 bootstrap samples for illustration)
### We use the 'bootMer' function fom the lme4 package
fmVAB<- bootMer(x = fmVA, FUN = get.lmer.effects.forBootMer, nsim = 5)
resultsBoot<- get.lmer.effects ( lmerObj = fmVA, bootMerObj = fmVAB, conf = .95, saveData = FALSE)
} # }